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In [ 1 ] it was shown that in plane flow of an ideal gas with infinite 

electrical conductivity there are either two or four real characteristics, 

along which certain relations are satisfied. In computing floss on a 

linear theory it is necessary to know along which of these character- 

istics disturbances will die out, going away from the body toward in- 

f inity. 

Below, the nature of the propagation of disturbances from breaks in 
stream1 ines is investigated. It is shown that shoclr waves may emerge from 

convex corners. Conversely, at concave corners the turning of the flow 

may be accomplished by waves of the Prandtl-Meyer type. 

The analysis of the propagation of disturbances is applied to the in- 

vestigation of the nature of the flow past bodies with a small angle be- 
tween the directions of the magnetic field and the direction of the 

approaching flow. 

1. Outgoing and incoming shock waves. Let us investigate the flow 

changes in a weak shock wave for the case where the vectors of the velo- 

city V,II and magnetic field H 
II 
are parallel (Fig. 1). If we denote by 0 O/I 

the angle between the characteristics and the flow direction ahead of the 
wave, and by olll the corresponding angle behind the wave, t!len, as shown 

in [ 2 1 , 0~11 > ucll > ~~11, that is, the shock divides the angle between 

the characteristics. It is evident that the portion of the wave DO is 
incoming, in relation to the streamline AOB, since the characteristics 
which run into the wave come from below, and the disturbances which pro- 

pagate along them, are not determined by the streamline A OB. Conversely, 
the portion of the wave OE depend s on the streamline AOB and is out- 

going. 
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Fig. 1. 

Now let the field vector H = Yl make an angle a with the velocity 
vector V. ahead of the wave (Fig. 1). To go to this case from the one 
considered above, it is sufficient to add to the flow a velocity V, 
parallel to the wave, such that V, + V = Vail . Evidently, V, - V. = VIII y 

yell = AVil . In [ 2 1 it is shown that, to an accuracy 01i2, 

It is evident that for a > o the angle 8 is negative, i.e. the con- 
vex side of the streamline AO,B, faces upward. For a = o the flow does 
not turn at the shock wave. 

Let us investigate how the character of the approach of the charac- 
teristics to the shock wave changes with a change of the angle u, Denote 
by uC the angle of inclination of a characteristic of the oncoming flow 
to the velocity vector Vo. In the case of flow with parallel velocity 
and field vectors, the corresponding characteristic has inclination u 
and the corresponding velocity is V II 

11, which are determined by the 
relations I 1 1 

v,= AL QUII tg~II -t-&a 
cosatgo,, +tga ’ Qao= I-ttgo,, tga 

tg Q ,, = f 1 
J 

$I,,2 - Na (1 - M,?) 

(1 - iW/Mli”, IN% - A!$“) 

where M II is the Mach number corresponding to Y II ’ and p0 is the pressure 

in the oncoming flow. On the other hand, 

For small 8, evidently, CT 41 = w + 6, uII = ooll + 7, and Ml1 = JQl + c, 

where 6, r and c are quantities of order 8. Putting these expressions in 
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(1.2) and (1.4), dropping terms of order f3’, and eliminating E with the 

help of (1.3), we obtain 

T 

{ 

W o0 II (tg a0 ,, + tg a) (MO ,, 2-l)a (MO ,, 2 - W2 

I 

-1 
-= I+. 
5 -~,114tga[(Na-Mo112)+Na(1--MoIIa)l (1.5) 

For r/8 < 1, the characteristics going out from the streamline AO,B, 

run into the shock above the streamline, and the wave going out from the 
body goes upwards; for r/8 > 1, conversely, the characteristics from the 

streamline AO,B, run into the shock below that line, and the wave goes 

out from the body downward. 

Let 011 > 0 and Mall < 1. In this case tg 0~11 < 0 12 I. For a = 0, 

evidently, 7 = 0. The characteristics from the streamline AOB approach 

the wave from below. With increasing a, the characteristics continue to 

approach from below, but the angle between them and the wave increases 
until, at some angle a = a*, they become perpendicular to the wave. For 

still larger angles the characteristics approach the wave from above. 

‘lhe critical value a = a* corresponds to r/6 + - 00, i.e. 

(1.6) 

tga*= - tg%& -:~rJ,12) 
(N2-‘Mo,,~)[Mo,,~-~*(1-~~“n2)~ 

(N2_hf0,,2) [Mo,,2-1Y2(1-Mo,,2)1 + N”:W,II” (l-Mall*) 

Equating this expression to (1.1) we see that a < o , i.e. the charac- 

teristics “reverse themselves” for smaller values if a t&an does the 

streamline. lhus, for a* < a < 0, slnxk waves go out from a convex corner. 
For - tg aOIl > tg a > tg o the wave goes out from a concave corner, cor- 
responding to 8 < 0. For tg a > - tg oo, it is evident that r/6 < 1. 

This situation obtains also for M 011 > 1. 

An analogous analysis shows that for expansion waves of the Prandtl- 

Meyer type thelpoints a = a* 

(for 011 < 0). At a = a* 

and a = o also appear as singular points 

the characteristic fan changes its direction to 

the other side, at a = o the deflection angle of the velocity vector 

changes sign. In the interval a* < a < o the turning of the flow in a con- 
cave corner is of a Prandtl-hleyer type. 

2. Flow at small values of a. In [ 1 1 it was shown that Equations 
(1.2) give a parametric (parameter hYoll ) solution of the fourth order 
equation which determines the inclination of the characteristics, Assign- 
ing a and MO11 , we find MO and tg uo. 

In accordance with the classification in [ 1 1 , regimes in which there 
are four real characteristics are called hyperbolic, and regimes with tw 
real characteristics elliptic-hyperbolic. Knowing the relations between 
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double arrow indicates the character of the approach of the character- 

istics to the wave, and, it follows, its direction. In the case consider- 

ed the wave goes out from a corner at the point 0. Adding a velocity 

parallel to the wave we find (Fig. 2) that the velocity vector behind 

the wave, for a f 0, must lie in the @adrant 1'. From (1.5) it follows 

that r/8 > 1. Therefore, the characteristics approach the wave like the 

arrows A’; It follows that the wave goes downstream from a concave 

streamline on the upper surface of the body. 

(A2) -1 <M,I <O, o>tgo,1 > --tga, Q~>QU>O 

Since here IM 
II 

1 < 1, then in accordance with (1.1) the velocity 

vector after the wave for a = 0 will appear on the line OC (Fig. 2) and 

the direction of the wave is defined by the arrows B. In the correspond- 

ing flow for a f 0 the velocity vector behind the wave will lie on the 

Fig. 2. Fig. 3. 

line O'C', and the direction of the wave is given by arrows A’, since 

here r/8 < 1. Thus this wave has the same character as the preceding on+e. 

(AS) MI1 < 1, tg’u,j = --tga, tga=(l--k)tga, l<Ic<l+N2 

From (1.21, (1.3) and (l.l) we easily find that 0 < tgo< tg a for 

k < l+ N2 and tg o > tg a for k > l+ N2. It follows that the velocity 

vector after the wave (Fig. 31 must lie on the line O'c'-, and the wave 

goes out, from a downward bend at O'., in the direction of arrow A’-, 
since for a = 0 it was in the direction of A, and ~/8 > 1. 

(44) MI1 >I, tguII<--&a, tgo<O 

'Ihe velocity diagrmn is given in Fig. 

velocity vector will appear Quadrant 2'. 
4. Since Ml1 > 1, the end of the 

In accordance with (1.5) we have 

r/8 < 1, and, it follows, the wave is again in the direction of arrow A', 

since in the corresponding flow with a = 0 the wave is inclined in the 

direction of B. 
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flow parameters along characteristics [ 1 1, it is possible to construct, 
speaking in a general sense, the full solution in hyperbolic flows or to 
separate the hyperbolic part of the solution in elliptic-hyperbolic 
flows [ 11. 

‘lhis is most simply done within the framework of linearized theory. 
l&t even to construct flows on a linear theory, it is necessary to 
clarify the possible shock wave configuration, since to calculate the 
flow it is necessary to know along which characteristics disturbances die 
out toward infinity. In the general case, disturbances can propagate up- 
strean as well as downstream; therefore, to answer the above question, it 
is essential to clarify which of the characteristics do not actually go 
to infinity but run into the shock wave. In going out to infinity along 
these characteristics in the linearized approximation, disturbances need 
not die out. 

Characteristics are shock waves of vanishing strength; therefore, 
there may exist as many shock waves as characteristics. However, some of 
them may be incoming waves, not dependent on the body. Evidently, such 
waves should not exist in the undisturbed flow at infinity. 

Below, using the example of a thin airfoil section and with the help 
of the results in Article 1, the character of the flow for a < 1 will be 
investigated. For small a all the flow types exist, and at the same time 
the analysis is substantially simplified. 

3. Hyperbolic flows. Hyperbolic flow occurs for M > M, = 
[l- l/2(1 - N*) tg*al set a. Let us examine several regimes separately.* 

(4 
____. 

M> C/1+N2csca 

Here there are four waves [ 1 1 : 

(Al) Mu <--I, O> tgall > -tga, tga>tga>O 

On Figure 2 is shown a velocity diagram, corresponding to these para- 
meters. In accordance with (1.11, the end of the velocity vector behind 
a wave with inclination “11 > l/2 n will appear in the @adrant 1. ‘lhe 

l In the following it is not essential to distinguish between ~7 and CT,,; 
cc~~ , 0~11 and q; if,-, and 71. Below. for each of these groups wi shall 

use U. ~11 and Ml1 , respectively. Instead of Ma we shall write M for 

simplicity. 
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Thus, the last tuo waves can go downstream from a concave stream-line 

on the lower surface. The general character of the waves on the airfoil 
section in the case considered is shown in Fig. 4a. 

0 6 

Fig. 4. 

P) 14 + Ny(N cos a) < iM< Vl -+ N2 csc a 

Here there are again four waves [ 1 1 

(131) --1<M11 <o, o.> tgq > --ga, Qa>lga>O 

(W Mii <I 

(133) 

(B-9 

, 

wave of type (A2) 

tgoi, = -kIcga, tga=(l--Ic)tga, l<k<l+f-V 

wave of type (A3) 

AfII > 1, &us < - tga, tga<o 

wave of type (A4) 

For the case (J34) the velocity diagram is shown on Fig. 5. It is easy 
to see that the velocity vector after the wave must lie in @adrant 1’. 

Furthermore, it may be seen from (1.1) and (1.3) that tg o+ 00 when 

Ml1 + -. Let us find the value of Ml1 for which w = a. We have 

[M ,, 2 (If W - N21 W tga /, 2- 1) = M 2 
- ,, N2 

It is evident that for Ml1 > 1 this equation can be fulfilled if Ml1 = 

1 + 0(a2). Dropping terms of higher order, we obtain 

fV,,=1+1/z(1-N2)tgaa, tguil=[(1-N2)tga]-1 

M = [1 - ‘iz (1 - N2) tg2 cc] set a 

It is easy to show that these values correspond to the point M = MS, 
where the curve M = -f(Ml~ ) has a minimum [ 1 1 . It follows that in the 
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range of values of M being considered we have o > a, and the end of the 

velocity vector behind the wave lies on the line O’C’ (Fig. 5). 

Fig. 5. Fig. 6. 

Furthermore, it is easy to show that along the curve in question r/6 < 1. 
Therefore, the wave has the direction of the arrow A’, Thus, the general 
picture of the waves on the airfoil section (Fig. 4a) will be the same as 
in case (A). 

(C) 

In this case there are three waves (Cl), (C31, (C4) which are the same 

as waves (Bl), 0331, and (B4). The wave (C21 differs from (B21 or (A31 
only in that here k > 1 + p, and therefore, in accordance with what was 

said above (case Ml), tg o > tg a . It follows that the end of the velo- 

city vector (Fig. 31 behind the wave lies on the line O’D’; i.e. at the 
wave the turn is through a positive angle 8. Thus, this wave can go down- 
stream from convex corners on the lower surface of the airfoil section, 

and the general flow picture will be that depicted in Fig. 4b, where 

ItgoJ > tg loJ* 

m [ 1 - ‘/2 (1 - N2) 1g2 m] WC a < 111 < SW cc 

Waves (Dll, (D2) and (D4) are identical with (Cl), (C2) and (C4), 

respectively. 

(D3) Al ,) > 1, lguli > clga, lgo < -clgr. 

(II TO'IKC! A/ : h13 II.\lCC!.ll tg 0 ,, : clg a) 

‘Ibe corresponding velocity diagram is given in Fig. 6. 

Above (case @4)), it was shown that on the curve AI = f(M,i 1, we always 

have o > Q and r/6 < 1 to the right of the point M = M,. It can be shown 
that to the left of that point, w < a and r/6 > 1. Consequently, the end 
of the velocity vector behind the wave lies on O’C’ (Fig. 61, and the 
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wave goes from a concave corner in the direction of arrow A’, the flow 
picture being again as in Fig. 4b. 

4. Elliptic-hyperbolic flow. 'These flows occur [ll for M, > M> 

M 2, regime (El, and for 0 < M < M,, regime (F). In each of these regimes 

there are two characteristics*. 

In [ 1 I it was shown that in this regime it is possible LO divide the 

flow into a hyperbolic portion which does not die out at infinity and an 
elliptic portion which dies out. ‘lhe non- decaying disturbances propagate 

along characteristics, running into shock waves. 

In regime (E) there may exist waves of type (Cl) and (C2). ‘lhe flow 

picture is shown in Fig. 7a. 

In regime (F) there are also two waves 

(Fl) (wave of type (Bl)) 

P2) C-q, >O, WJ,, > 0, &a> tga 

From the velocity diagram (Fig. 5) it may be seen that the end of the 
velocity vector behind the wave must lie in Qadrant 2’; and, since 
according to (1.5) we have T/S < 1, the wave is in the direction of arrow 
B. 

‘lhe general nature of the flow in this case is shown 

also, an elliptic flow (dying out at infinity) is to be 

the discontinuous hyperbolic part of the flow. 

+Fw/-+y 
0 6 

Fig. 7. 

in Fig. 7b. Here 

superimposed on 

a 6 

Fig. 8. 

5. Quasi-hyperbolic flow. These flows occur 11 I for M, < M < M2. 
Here again there are four real characteristics. ‘Ihe curve M = f(M 

II 
1 for 

tg o < 0 has a maximum at the point M, and a minimum at the point M,. 
II 

For small a, the values of Ml1 corresponding to the points M, and M, lie 

in the neighborhood of Ml1 = N/\l 1 + N2 and Ml1 = N, respectively. 

Let MI,’ = N* - k2 tg2a. For k = 0, evidently, M = N set a. For k > 0, 

l The values Ml and M, are given in Article 5. 
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tw,, = 
_ N2 -NS 

k (1 -- A’z) tg 01 ’ t~“~~[N~+(l-N~)k]tga 

It is easy to prove that the point M, corresponds to k = 1 - N2. For 
k = 2( 1 - @ we again have M = N set a. 

Let us investigate the nature of the flow in the neighborhood of the 
point hi2 

(G) Nseca<M<Nscca[l-!- l/z(l-fVIV?)Vztgza] 

It is obvious that the waves (Gl) and (G2) will be of type (Cl) and 
(C2). 

for which tg ofi and tg CJ are determined by (5.1) for 1 - N2 < k < 
Zfl- fv2). 

‘Ihe velocity diagram is given in Fig. 3. For sufficiently small a 

along the portion of the curve M = fMfi1 ) (with tg elf < 0) which lies in 

the quasi-hyperbolic regime, w > a. Substituting (5.1) in (1.5) it is 
easy to prove that r/8 < 1 to the left of the point M,. It follows that 
the wave under consideration is inclined in the direction of arrow A, and 

can go upstream from concave corners on the upper surface of the airfoil 
section. 

The wave (G4) differs from the preceding ones only in that here 
0 < k < (1 - N*) and r/6 > 1. Iherefore, in accordance with Fig. 3, the 
wave must be inclined in the direction of the arrow A’ and can go down- 
stream from convex corners on the lower surface of the profile. Thus, the 
flow picture in this case will be as on Fig, Ra. 

Let us now investigate the neighborhood of the point M,. Let M ’ ._ 

N2(1 + N2)-l i. c2 and tg “11, = - k tg a. Then, from (1.3) we have ‘I - 

At the point M, 
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Then 

ICI, = N (cos a Jl + N2)-l [l + ‘/2 (B tg z)‘~] [l - (B tg c~)t’~]-’ 

(W Ml<M<Nseca 

‘Ihe waves (Hl) and (H2) are identical with waves (Cl) and (C2). It is 
easy to prove that to the right of point M,, we must have r/S < 1, and 
the wave (H3) has the same character as (C3). 

(H4) Ml, < 1, &a,, > 0, &a>0 

The velocity diagram here corresponds to Fig. 5. Since here r/6 < 1, 
and the end of the velocity vector behind the wave must lie in Quadrant 

2’s therefore the wave is inclined in the direction of arrow B’, and the 

flow picture has the form shown in Fig. 8b. 

We may note that the flow picture depicted in Figs. 4, 7 and 8 is 
constructed with the assunption that at any corner the turning of the 
flow by every wave is in the same direction. Generally speaking, this is 
not always the case, an example of this being given in [ 1 1. It may 

happen, for instance, that in the first shock wave the flow turns through 

an angle larger than that of the body, then following it there may be an 

expansion wave instead of a second shock wave. ‘Ihis question has to be 
decided separately for each particular case. In the present investigation 
what is important is that along characteristics which coincide with shock 
waves, disturbances need not die out. 

We also note that if the contour does not have a corner then a 
detached shock wave will be formed at a certain distance from the air- 
foil section. 
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